Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell Physiol Biochem ; 56(6): 707-729, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2206081

ABSTRACT

Natural resources have long played a prominent part in conventional treatments as a parental source due to their multifaceted functions and lesser side effects. The diversity of marine products is a significant source of possible bioactive chemical compounds with a wide range of potential medicinal applications. Marine organisms produce natural compounds and new drugs with unique properties are produced from these compounds. A lot of bioactive compounds with medicinal properties are extracted from marine invertebrates, including Peptides, Alkaloids, Terpenoids, Steroids. Thus, it can be concluded that marine ecosystems are endowed with natural resources that have a wide range of medicinal properties, and it is important to examine the therapeutic and pharmacological capabilities of these molecules. So, finding particular inhibitors of the COVID-19 in natural compounds will be extremely important. Natural ingredients, in this light, could be a valuable resource in the progression of COVID-19 therapeutic options. Controlling the immunological response in COVID-19 patients may be possible by addressing the PI3K/Akt pathway and regulating T cell responses. T cell effector activity can be improved by preventing anti-viral exhaustion by suppressing PI3K and Akt during the early anti-viral response. The diversity of marine life is a significant supply of potentially bioactive chemical compounds with a broad range of medicinal uses. In this study, some biologically active compounds from marine organisms capable of inhibiting PI3K/AKT and the possible therapeutic targets from these compounds in viral infection COVID-19 have been addressed.


Subject(s)
Biological Products , COVID-19 , Humans , Angiogenesis Inhibitors , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Biological Products/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2/drug effects
2.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1715567

ABSTRACT

Alkaloids are nitrogen-containing compounds, biosynthesized by both marine and terrestrial organisms, often with strong biological properties [...].


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Drug Discovery , Alkaloids/isolation & purification , Aquatic Organisms/chemistry , Biological Products , Drug Discovery/methods , Plant Extracts
3.
Viruses ; 13(9)2021 09 13.
Article in English | MEDLINE | ID: covidwho-1411081

ABSTRACT

Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry , Virus Diseases/epidemiology , Alginates/chemistry , Alginates/pharmacology , Antiviral Agents/chemistry , Glucans/chemistry , Glucans/pharmacology , Humans , Molecular Structure , Pandemics , Polysaccharides/chemistry , Virus Diseases/drug therapy , Virus Diseases/etiology , Virus Diseases/prevention & control
4.
Mar Drugs ; 19(8)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1376892

ABSTRACT

Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-ß-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKß) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aquatic Organisms/chemistry , Fucose/pharmacology , Galactose/pharmacology , Seaweed/chemistry , Animals , Inhibitory Concentration 50 , Mice , RAW 264.7 Cells/drug effects , Zebrafish
5.
Mar Drugs ; 19(8)2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1325730

ABSTRACT

The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.


Subject(s)
Antiviral Agents/chemistry , Aquatic Organisms/chemistry , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Humans , Polyphosphates/pharmacology , Polyphosphates/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
6.
Mar Drugs ; 19(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325729

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , Computer Simulation , Heparin/chemistry , Heparin/metabolism , Humans , Molecular Docking Simulation , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Sulfates/chemistry
7.
Comput Biol Med ; 135: 104525, 2021 08.
Article in English | MEDLINE | ID: covidwho-1252627

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic. The virus that causes the disease, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), predominantly infects the respiratory tract, which may lead to pneumonia and death in severe cases. Many marine compounds have been found to have immense medicinal value and have gained approval from the Food and Drug Administration (FDA), and some are being tested in clinical trials. In the current investigation, we redirected a number of marine compounds toward SARS-CoV-2 by targeting the main protease (Mpro, PDB ID: 6Y2F), subjecting them to several advanced computational techniques using co-crystallised ligand as the reference compound. The results of the binding affinity studies showed that two compounds, eribulin mesylate (eri) and soblidotin (sob), displayed higher docking scores than did the reference compound. When these compounds were assessed using molecular dynamics simulation, it was evident that they demonstrated stable binding at the binding pocket of the target protein. The systems demonstrated stable root mean square deviation and radius of gyration values, while occupying the binding pocket during the simulation run. Furthermore, the essential dynamics and free energy landscape exploration revealed that the protein had navigated through a minimal energy basin and demonstrated favourable conformation while binding to the proposed inhibitors. Collectively, our findings suggest that two marine compounds, namely eri and sob, show potential as SARS-CoV-2 main protease inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Aquatic Organisms/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics
8.
Mar Drugs ; 19(2)2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1079668
9.
Mar Drugs ; 18(12)2020 Dec 16.
Article in English | MEDLINE | ID: covidwho-979109

ABSTRACT

Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aquatic Organisms/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Animals , Computer Simulation , Humans
10.
Mar Drugs ; 18(12)2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-966721

ABSTRACT

The investigation of marine natural products (MNPs) as key resources for the discovery of drugs to mitigate the COVID-19 pandemic is a developing field. In this work, computer-aided drug design (CADD) approaches comprising ligand- and structure-based methods were explored for predicting SARS-CoV-2 main protease (Mpro) inhibitors. The CADD ligand-based method used a quantitative structure-activity relationship (QSAR) classification model that was built using 5276 organic molecules extracted from the ChEMBL database with SARS-CoV-2 screening data. The best model achieved an overall predictive accuracy of up to 67% for an external and internal validation using test and training sets. Moreover, based on the best QSAR model, a virtual screening campaign was carried out using 11,162 MNPs retrieved from the Reaxys® database, 7 in-house MNPs obtained from marine-derived actinomycetes by the team, and 14 MNPs that are currently in the clinical pipeline. All the MNPs from the virtual screening libraries that were predicted as belonging to class A were selected for the CADD structure-based method. In the CADD structure-based approach, the 494 MNPs selected by the QSAR approach were screened by molecular docking against Mpro enzyme. A list of virtual screening hits comprising fifteen MNPs was assented by establishing several limits in this CADD approach, and five MNPs were proposed as the most promising marine drug-like leads as SARS-CoV-2 Mpro inhibitors, a benzo[f]pyrano[4,3-b]chromene, notoamide I, emindole SB beta-mannoside, and two bromoindole derivatives.


Subject(s)
Aquatic Organisms/chemistry , Biological Products/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Design , Biological Products/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Computer-Aided Design , Coronavirus 3C Proteases/metabolism , Humans , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
11.
Mar Drugs ; 18(7)2020 Jun 28.
Article in English | MEDLINE | ID: covidwho-724325

ABSTRACT

Four new indolyl diketopiperazines, aspamides A-E (1-4) and two new diketopiperazines, aspamides F-G (5-6), along with 11 known diketopiperazines and intermediates were isolated from the solid culture of Aspergillus versicolor, which is an endophyte with the sea crab (Chiromantes haematocheir). Further chiral high-performance liquid chromatography resolution gave enantiomers (+)- and (-)-4, respectively. The structures and absolute configurations of compounds 1-6 were determined by the comprehensive analyses of nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) calculation. All isolated compounds were selected for the virtual screening on the coronavirus 3-chymoretpsin-like protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the docking scores of compounds 1-2, 5, 6, 8 and 17 were top among all screened molecules, may be helpful in fighting with Corona Virus Disease-19 (COVID-19) after further studies.


Subject(s)
Antiviral Agents , Aquatic Organisms/chemistry , Aspergillus/chemistry , Cysteine Endopeptidases/metabolism , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Viral Nonstructural Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Betacoronavirus/metabolism , Chromatography, High Pressure Liquid , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Drug Evaluation, Preclinical , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation , SARS-CoV-2 , Stereoisomerism , User-Computer Interface , Viral Nonstructural Proteins/chemistry
12.
Biomolecules ; 10(7)2020 07 07.
Article in English | MEDLINE | ID: covidwho-640431

ABSTRACT

Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.


Subject(s)
Antiviral Agents/chemistry , Aquatic Organisms/chemistry , Biological Products/chemistry , Antiviral Agents/pharmacology , Aquatic Organisms/classification , Biological Products/pharmacology , Coronaviridae/drug effects
13.
Drug Discov Today ; 25(6): 956-958, 2020 06.
Article in English | MEDLINE | ID: covidwho-88528

ABSTRACT

This article examines three aspects of antivirals, such as hydroxychloroquine, chloroquine, and remdesvir, as they might relate to the treatment of a viral infection such as COVID-19: (i) the use of vaporization for the delivery of antivirals, with the bulk constituents having mild antiviral efficacy; (ii) the application of a marine natural product extract as opposed to a single molecule as an antiviral agent; and (iii) a counter intuitive approach to formulation that is, in part, based on delivering multiple species that fall into three categories: building blocks for the virus to accelerate replication; an energy source for the infected cell to boost its immune response; and the species that antagonize or provide toxicity to the virus.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Aquatic Organisms/chemistry , Biological Products/administration & dosage , Biological Products/chemistry , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/chemistry , COVID-19 , Chloroquine/administration & dosage , Chloroquine/chemistry , Coronavirus Infections/drug therapy , Drug Compounding , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/chemistry , Models, Molecular , Pandemics , Pneumonia, Viral/drug therapy , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL